Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes.
نویسندگان
چکیده
Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytosol and mitochondrial intermembrane space, can engage negatively charged bilayers through a positively charged lipid-binding interface. The significance of this membrane-binding interface is established through SOD1 activity and genetic complementation studies in Saccharomyces cerevisiae, showing that recruitment of CCS to the membrane is required for activation of SOD1. Moreover, we show that a CCS:SOD1 complex binds to bilayers in vitro and that CCS can interact with human high affinity copper transporter 1. Shifting current paradigms, we propose that CCS-dependent copper acquisition and distribution largely occur at membrane interfaces and that this emerging role of the bilayer may reflect a general mechanistic aspect of cellular transition metal ion acquisition.
منابع مشابه
Normal prion protein has an activity like that of superoxide dismutase.
We show here that mouse prion protein (PrP(C)) either as recombinant protein or immunoprecipitated from brain tissue has superoxide dismutase (SOD) activity. SOD activity was also associated with recombinant chicken PrP(C) confirming the evolutionary conserved phenotype suggested by sequence similarity. Acquisition of copper by PrP(C) during protein folding endowed SOD activity on the protein b...
متن کاملLipid-associated aggregate formation of superoxide dismutase-1 is initiated by membrane-targeting loops.
Copper-Zinc superoxide dismutase 1 (SOD1) is a homodimeric enzyme that protects cells from oxidative damage. Hereditary and sporadic amyotrophic lateral sclerosis may be linked to SOD1 when the enzyme is destabilized through mutation or environmental stress. The cytotoxicity of demetallated or apo-SOD1 aggregates may be due to their ability to cause defects within cell membranes by co-aggregati...
متن کاملCtr6, a vacuolar membrane copper transporter in Schizosaccharomyces pombe.
Aerobic organisms possess efficient systems for the transport of copper. This involves transporters that mediate the passage of copper across biological membranes to reach essential intracellular copper-requiring enzymes. In this report, we identify a new copper transporter in Schizosaccharomyces pombe, encoded by the ctr6(+) gene. The transcription of ctr6(+) is induced under copper-limiting c...
متن کاملEnhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli
Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...
متن کاملAlteration of Endogenous Glutathione Peroxidase, Manganese Superoxide Dismutase, and Glutathione Transferase Activity in Cells Transfected with a Copper-Zinc Superoxide Dismutase Expression Vector
Transfection of a human pSV2 (copper-zinc) superoxide dismutase expression vector into murine fibroblasts resulted in stable clones producing increased amounts of copper-zinc superoxide dismutase. A marked increase in endogenous glutathione peroxidase activity (up to 285%) and a smaller increase in glutathione transferase activity (up to 16%) also occurred. Manganese superoxide dismutase activi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 51 شماره
صفحات -
تاریخ انتشار 2013